Wednesday, 12 September 2012

To perform the addition of two matrices


Description:
program takes the two matrixes of same size and performs the addition an also takes the two matrixes of different sizes and checks for possibility of multiplication and perform multiplication if possible.
algorithm:
Step 1: start
Step 2: read the size of matrices A,B – m,n
Step 3: read the elements of matrix A
Step 4: read the elements of matrix B
Step 5: select the choice for you want. If you select case 1 then goto matric    
            addition. Else  goto Step 7.
Step 6: print Sum of matrix A and B
Step 7:  if you select case 2 then goto matrix multiplication
Step 8: check if n=p, if not print matrices can not be multiplied
Step 9: Otherwise perform the multiplication of matrices
Step 10: Print the resultant matrix
Step 11: Stop
Program:

#include<stdio.h>

void main()
{
int ch,i,j,m,n,p,q,k,r1,c1,a[10][10],b[10][10],c[10][10];
clrscr();
printf("************************************");
printf("\n\t\tMENU");
printf("\n**********************************");
printf("\n[1]ADDITION OF TWO MATRICES");
printf("\n[2]MULTIPLICATION OF TWO MATRICES");
printf("\n[0]EXIT");
printf("\n**********************************");
printf("\n\tEnter your choice:\n");
scanf("%d",&ch);

if(ch<=2 & ch>0)
{
 printf("Valid Choice\n");
}

switch(ch)
{
                         case 1:
                        printf("Input rows and columns of A & B Matrix:");
                         scanf("%d%d",&r1,&c1);
  printf("Enter elements of matrix A:\n");
                          for(i=0;i<r1;i++)
                        {
                                     for(j=0;j<c1;j++)
                                     scanf("%d",&a[i][j]);
                          }
  printf("Enter elements of matrix B:\n");
                         for(i=0;i<r1;i++)
                         {
                                     for(j=0;j<c1;j++)
                                    scanf("%d",&b[i][j]);
                          }
                         printf("\n =====Matrix Addition=====\n");
                          for(i=0;i<r1;i++)
                        {
                                    For(j=0;j<c1;j++)
                                       printf("%5d",a[i][j]+b[i][j]);
                                    printf("\n");
                           }
                         break;

             case 2:
            printf("Input rows and columns of A matrix:");
             scanf("%d%d",&m,&n);
            printf("Input rows and columns of B matrix:");
            scanf("%d%d",&p,&q);
             if(n==p)
             {
                         printf("matrices can be multiplied\n");
                         printf("resultant matrix is %d*%d\n",m,q);
                         printf("Input A matrix\n");
                         read_matrix(a,m,n);
                        printf("Input B matrix\n");
                         /*Function call to read the matrix*/
  read_matrix(b,p,q);
  /*Function for Multiplication of two matrices*/
  printf("\n =====Matrix Multiplication=====\n");
  for(i=0;i<m;++i)
                           for(j=0;j<q;++j)
                         {
                                    c[i][j]=0;
                                       for(k=0;k<n;++k)
                                    c[i][j]=c[i][j]+a[i][k]*b[k][j];
                           }

                        printf("Resultant of two matrices:\n");
                          write_matrix(c,m,q);
              }
               /*end if*/
  else
             {
  printf("Matrices cannot be multiplied.");
  }
             /*end else*/
             break;

            case 0:
             printf("\n Choice Terminated");
            exit();
            break;

  default:
             printf("\n Invalid Choice");
}
getch();
}

/*Function read matrix*/
int read_matrix(int a[10][10],int m,int n)
                         {
                                     int i,j;
                                     for(i=0;i<m;i++)
                                    for(j=0;j<n;j++)
                                    scanf("%d",&a[i][j]);
  return 0;
  }

  /*Function to write the matrix*/
int write_matrix(int a[10][10],int m,int n)
            {
                          int i,j;
                          for(i=0;i<m;i++)
                         {
                                    for(j=0;j<n;j++)
                                    printf("%5d",a[i][j]);
                                    printf("\n");
                           }
   return 0;
              }


Output:
1.
************************************
                MENU
**********************************
[1]ADDITION OF TWO MATRICES
[2]MULTIPLICATION OF TWO MATRICES
[0]EXIT
**********************************
        Enter your choice:
1
Valid Choice
Input rows and columns of A & B Matrix:2
2
Enter elements of matrix A:
2
2
2
2
Enter elements of matrix B:
2
2
2
2

 =====Matrix Addition=====
    4    4
    4    4
************************************
                MENU
**********************************
[1]ADDITION OF TWO MATRICES
[2]MULTIPLICATION OF TWO MATRICES
[0]EXIT
**********************************
        Enter your choice:
2
Valid Choice
Input rows and columns of A matrix:2
3
Input rows and columns of B matrix:2
2
Matrices cannot be multiplied.

************************************
                MENU
**********************************
[1]ADDITION OF TWO MATRICES
[2]MULTIPLICATION OF TWO MATRICES
[0]EXIT
**********************************
        Enter your choice:
2
Valid Choice
Input rows and columns of A matrix:2
2
Input rows and columns of B matrix:2
2
matrices can be multiplied
resultant matrix is 2*2
Input A matrix
2
2
2
2
Input B matrix
2
2
2
2

 =====Matrix Multiplication=====
Resultant of two matrices:
    8    8
    8    8
Conclusion : The program is error free

VIVA QUESATIONS:

1)      What is condition for performing an matric addition ?
Ans: program takes the two matrixes of same size and performs the addition
2)      What is condition for performing an matric addition ?
Ans: The two matrixes of different sizes and checks for possibility of multiplication and perform multiplication if possible












No comments:

Post a Comment